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Ablation is a multi-disciplinary phenomenon of thermo-chemical in nonequlibrium state. The dominant and the 

least understand problems for ablating simulation are the nonequilibrium chemical kinetics, energy cascading 

between the internal degrees of freedom of gaseous medium, radiative energy propagation, and the interaction 

of high-temperature gas and ablating material [1-4].  For an effective and productive basic research endeavor, a 

fewer selected and highly focused areas become mandatory. Therefore, three major objectives of the present 

research grant have been identified as stipulated in the original proposal.   

 

First, it has found by the present effort that in the 

absence of an externally applied electromagnetic field, 

the Lorentz force and Joule heating of the globally 

neutral ionized gas are insignificant at the reentry 

speed up to 12 km/s [4-6]. Through a direct 

comparison of the kinetic models of Park [7] and 

Treanor et al [8], the relaxation rate among the 

translation and vibration internal degrees of excitations 

is also found to be rather insensitive to dissociation. 

All observations indicate energy exchange between 

internal degrees of freedom to electronic state is still 

dominated by the chemical kinetic process up to the 

environment of the Stardust capsule reentry [6-8].  This observation can also be made by the comparison 

nonequlibrium chemical composition along the stagnation streamline of the RAM-C-II probe in Figure 1. It has 

been shown the energy transfer between the electronic excitation and lower energy modes has a limited effect to 

conductive and convective heat transfer [4].   

 

The most meaningful evaluation for the different kinetic 

models of the nonequilbrium hypersonic flow past the RAM-

C-II is directly comparing the electron number density 

measurements adjacent to the vehicle surface [4]. These flight 

data were collected by two different devices, the major portion 

of data was collected by a four-frequency microwave reflector 

near the forebody of the vehicle. A single measurement at the 

last data collecting location was made by using an iridium 

electrostatic probe which has a different data scattering band 

than the rest of the measurements. The direct comparison with 

benchmark computations by Candler et al, Josyula et al and 

the flight data by Jones [4,5] is displayed in Figure 2. It is seen 

that all computational results using the rational kinetic gas 

models yield compatible agreement with the flight test data. 



 

 

 
Figure 3. Radiative frequency shift of Stardust sample return 

capsule from the early to the later stages of reentry 

 

The simplified chemical kinetics model for conductive-convective heat transfer model has shown an equally 

accurate prediction in comparison with the established procedures of the NASA S&T centers for thermal 

protection [5,9-12] but at a 27% computational resource saving. The additional evaluation for the different 

nonequilibrium kinetic models of hypersonic flow past the RAM-C-II probe and Stardust Sample Return 

Capsule has convincingly illustrated by directly comparing the chemical composition in the shock layer and 

convective heat transfer rates with simulated results in open literature [4-6].  

 

In the hypersonic reentry environment, radiation heat transfer contributes a substantial amount of energy 

transfer in addition to the conductive and diffusive processes. In fact, at the maximum heat loading condition 

for the Stardust reentry, the radiation heat transfer rate is 120 w/cm
2
 versus the convective-conductive heat 

transfer rate of 1,100 w/cm
2 

[1,2]. Therefore it is critically important to understand the basic mechanism and to 

develop an accurate and efficient predictive method. The high-temperature gas mixture in shock layers and 

wakes of entering space vehicles contain optically active components as CO2, H2O, N2, O2, NO, N2
+
, C2, CO, 

etc. The radiative heat transfer computation requires not only predicting the spectral radiation fluxes on the 

vehicle surface but also inside the radiating volume bounded by the bow shock.  

 

The energy exchanging mechanism of radiative heat transfer is fundamentally different from the convective or 

conductive process. For thermal radiation, it’s a phenomenon associated with any quantum transition of 

molecule and electronic transition in atom which has a spectrum from the far infra-red (251000m) to near 

ultra-violet (0.40.7m). Therefore, the electronic excitation is not ignorable in radiative calculation as that in 

convective-conductive heat transfer simulation [13,14]. 

 

According to astrophysics, all electronic transitions can be divided by into bound-bound, bound-free, and free-

free groups via the continuity criterion or the discreteness of the energy spectrum of the initial and final 

quantum of atom or molecule [7,13]. In high-temperature air, the most important optical activity molecules are 

well known and they are; the transitions for O2 (Schumann-Runge; 3 3

g gB X    ), N2 (2
nd

 positive; 3 3

u gC B   , 

and 1
st
 Positive; 3 3

g uB A     , NO (-band; 2 2B X  , -band; 2 2A X   ), 
2N  (1

st
 negative; 3 2

u gB X    ), and 

2O  (1
st
 negative; 4 4

g ub a   ). When the hypersonic reentry phenomenon involves carbonaceous ablating 

surface, at least six additional optically active species such as the C2, C2

, C2

+
, CN, CO, CO

+
 add to a 

substantial amount of complexity to the electronic bands to be included into radiative heat transfer analysis [9-

12]. According to the work by Laux et al [16,17], for blunt body with a reentry speed around 10 km/s and  the 

strong absorption by C and CO has been detected in the vacuum ultraviolet (80 -200 nm) and ultraviolet spectra.  

The emission of cyanide (CN) has also been noted, as well as, a low intensity absorption by CO2 within the 

boundary layer. In all, the nonequilibrium radiation is responsible for 26% of the total radiation flux in the 

spectra of 80-600 nm. Some of these transition processes are not fully understood but become critical 

mechanisms for the radiative heat transfer process 

[1-7,16,17]. 

 

An incisive investigation is being conducted for the 

radiative heat transfer, which is fundamentally 

different from the conductive-convective process 

[13,14]. The intensity of emission and absorption of 

radiation is controlled by the electronic excited state 

and the binding energy of the species. However in 

this process, the emission and absorption is limited 

in intensity and confined to the infrared spectrum 

[13]. The high-temperature gas mixture during the 

earth reentry usually is electronic excited, both the 

discrete and continuous radiative processes in energy 

spectrum occurred. Under this circumstance, the 
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Figure 4. Contributions from conductive, diffusive, and 

radiative heat transfer and comparison of the total rate 

with results of Olynick et al [1] 

 

radiation energy transfer to Stardust capsule reentry has the wide spectra from infrared to vacuum ultraviolet 

[13,14]. The computation for radiation heat transfer is based on multi-group model in a given spectrum. Within 

the divided bandwidth of each spectral group, the averaged absorption coefficients are used including the wide-

band and narrow-band models of a spectrum, or by the Line-by-line integration over the full spectrum 

[14,16,17]. The equation of radiation intensity is solved in the divided band with frequency-independent 

spectral coefficients of emission and absorption. The overall absorptivity and emissivity of the full spectral 

range is determined by summing over all the averaged values of these individual bands. As expected, the 

physical fidelity can be improved but at the expense of computational efficiency with an increasing number of 

spectral groups considered. In Figure 3, the computational result reveals for the first time that during the 

Stardust reentry that the frequency shifts of the maximal radiative intensity during the reentry from the visible 

to near infrared region. This behavior can be explained by the Wien’ law [13] and has been confirmed by a 

removal observation location from the stagnation point of the reentering capsule [15].   

 

The assessment of numerical resolution for a complex 

physical phenomenon is extremely challenged. In the 

present computational simulation, numerical accuracy is 

controlled by established a uniformly enforced 

convergent criterion for all dependent variables to the 

relative error of 10
-5

 and by a series of study on grid 

topology. The comparison of the peaking heat transfer 

rate with results in literature becomes ultimate 

assessment of the research achievement. Figure 4 shows 

the distribution of all heat fluxes on the surface in the 

plane of symmetry of the Stardust spacecraft, including 

conductive, diffusion, and radiative components. The 

combined conductive and diffusive heat transfer rates 

yield a value of 1.1910
3
 w/cm

2
 at the stagnation point of 

the capsule. The present total heat transfer rate without 

active ablation, is in a very good agreement with the 

results by Olynick et al [1] of 1.210
3 

w/cm
2
 and agrees 

equally well with the laminar flow result of Park [2] at 

1.18910
3
/cm

2
. The radiative heat transfer rate over the forebody also reveals a comparable value of 248 w/cm

2
 

with the results by Olynick et al and by Park. The good agreements by comparison ensure that the 

thermodynamic states and composition of all pertaining chemical species have duplicated the chemical-physical 

phenomena for radiative heat exchange evaluation. 

 

The third contribution of the present research grant is the derivation of interface boundary conditions for the 

ablating surface by the rigorous Reynolds transportation theorem. In the past, the majority of research efforts 

have been concentrated on the interface boundary conditions either from physical observations or by some 

insights [1-3,9-12]. These rigorous interface conditions are summarized as follows; 

For species conservation equations; 

                                                                                                                                                                                                                 

For momentum conservation equation; 

                                                                                                                                                                                                                  

For internal energy conservation equation; 

                                                                                                                                                                                                                 

 

 

 

In the above equations, the subscript symbols + and  denote the variables evaluated above or beneath the 

ablating interface, thus separate the required descriptions for the non-equilibrium gas from the ablator. The 

velocity of the recessing surface is indicated as ub which is permitted to vary from point to point on the control 
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Figure 5. Pressure contour and surface shear stress trace on 

frontal surface of Stardust capsule at peak heating condition  

 

surface. In this formulation, the ejection velocity of pyrolysis gas and the release vapor rate of the sublimated 

material on the ablating surface are required.  Therefore the detailed of gaseous motion through the porous 

ablating material is relegated to the research results of ablative material. The heat transfer term q accommodates 

the heat flux by conduction, convection, as well as, radiation transfer according to the energy conservation 

equation, equations [4-6,16,17]. Finally, the normal stress component is designated as  and it’s the only 

tensoral stress component that can contribute to the work done by the gas media; the non-equilibrium gas, 

sublimating vapor, and pyrolysis gas of the ablating material. 

 

The formulation is derived from the structure of the governing equations and has the direct link to the 

eigenvector of the partial differential equations system. This result intends to show these interface boundary 

conditions are much more complex for an ablating surface in the existing literatures. Addition efforts are still 

required as how these conditions can be implemented and ensured to maintain the computational stability. 

 

The first attempt by simulating the fastest man-make 

object - Stardust sample return capsule in three-

dimensional earth reentry has also been achieved by the 

present research grant. In Figure 5, the three-

dimensional result at eight-degree of angle of attack 

exhibits a significant 3-D relief effect which has not 

been resolved by all known previous investigations 

[17]. The pressure contour and the surface shear stress 

vector trace are present together; the post-shock 

expansion at the angle of attack condition is spreading 

into a very large lower pressure sector from the 

stagnation region indicating by the surface shear flow 

direction and the pressure contour.   At an angle of 

attack, a rapid expansion immediately downstream to 

the bow shock of the three-dimensional flow is not 

constrained only in the downstream planar surface like 

that of the axisymmetric flows [1,2,4].  However, it’s 

important to observe that the effect of ablating surface 

indicates a reduced heat load to the capsule can be as 

high as 35 percent at the peak heating condition [1]. In short, the total heat transfer rate for capsule by the 

present effort is in a very good agreement with the results by Olynick et al [1] and Park [2] including the 

radiative heat transfer rate.  

 

In addition, the radiative heat transfer drops sharply at the juncture of the forebody and afterbody of the capsule 

like that of the convective heat transfer process. At the same instance, the diffusive heating in the wake region 

begins to rise through energy cascading from vibrational excitation and chemical species recombination as the 

nonequilibrium flow leaving the computational domain. The present efforts through in-depth research and 

incisive interpretation of research findings contribute to the basic understanding of nonequilibrium hypersonic 

flow. 
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Honors & Awards Received 

USAF Basic Research Award, 1986        

Fellow of AIAA, 1993 

Outstanding and Exception Civilian Service Awards, 2001 

AIAA Plasmadynamics and Laser Award, 2004 

Keynote Speaker, 16
th

 CFD Conference of Taiwan, 2009 

Keynote Speaker, 17
th

 International Conference on MHD Energy Conversion, 2009 

 

AFRL Point of Contact   

Dr. Donald B. Paul, AFRL/RB WPAFB, OH 937-255-7329, met weekly. 

Dr. Richard Rivir, AFRL/RZ WPAFB, OH 937-255-2246, interacted monthly and actively participated in 

Window in Science Seminars. 

Dr. Roger Kimmel, AFRL/RBAA WPAFB, OH 937-255-8295, interacted weekly. 

Dr. Datta V. Gaitonde, AFRL/RBAC WPAFB, OH 937-904-4031, interacted weekly until he left for Ohio State 

University in September 2010. 

Mr. Michael Zeigler, AFRL/RBAI WPAFB, OH 937-656-6307, interacted and met weekly. 

Dr. Biswa Ganguly, AFRL/RZ WPAFB, OH 937-255-6782  
 

Transitions 

The objective of the present grant is to develop a numerically efficient and physically accurate modeling and 

simulation capability for non-equilibrium ablation phenomenon of earth reentry.  Therefore, technical 

transitions are focused on the research result dissimilation to research scientists of AFRL and 

national/international conferences of professional societies and follow up through personal interaction.  In order 

to keep abreast with the state-of-the-art progression, an active participation and productive contribution has 

been maintained with the Joint National Hypersonic Science Center (NHSC) Program by USAF and NASA.  

 

A productive interaction has been maintained with Dr. Roger Kimmel of the Air Vehicles Directorate, Air Force 

Research Laboratory (AFRL/RBA, 937-255-8295) for the UASF HiFire Program. Collaboration and knowledge 

sharing interaction on the kinetic models research for nonequlibrium high-temperature gas has consistently been 

maintained with Dr. D. Gaitonde (937-904-4031) and Mr. E. Josyula (937-904-4044) of AFRL/RBAC.   

 

The concept and potential practical applications of the Gaussian quadrature for local numerical resolution 

refinement in an isolated high-gradient domain has been regularly exchanged with Dr. M. Roquemore of the 

Propulsion and Power Directorate of Air Force Research Laboratory (AFRL/RZ), as well as, Dr. Y. Liu and Dr. 

T. Pulliam of the NASA Ames Research Center.  

 



 

 

The new model and computational simulation for plasma micro jet for enhancing ignition and combustion 

stability has also conveyed to Dr. Biswa Ganguly; an agreement of mutual support for plasma assisted ignition 

and enhanced combustion stability has been reached in 2010. The present project will provide a direct technical 

support to the Center of Advanced Power and Energy Conversion of the joint Wright State University and Air 

Force Research Laboratory (AFRL/RZPE 937-255-6782).  

 

Basic research accomplishment in high-temperature gas kinetic modeling has received attention from NATO 

nations. A visiting scholar, Fabio Roveda of Bologna University, Italy joined the research team on April 28, 

2010 for a period of nine months. His visit with us is fully funded by the Italy government. 

 

New Discoveries 

None. 
 

 

 




